- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Joo, Jungseock (3)
-
Park, Kunwoo (3)
-
Cha, Meeyoung (1)
-
Ha, Yui (1)
-
Kim, Su Jung (1)
-
Lu, Yingdan (1)
-
Pan, Jennifer (1)
-
Pan, Zhufeng (1)
-
Schaefer, Jack (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Understanding who blames or supports whom in news text is a critical research question in computational social science. Traditional methods and datasets for sentiment analysis are, however, not suitable for the domain of political text as they do not consider the direction of sentiments expressed between entities. In this paper, we propose a novel NLP task of identifying directed sentiment relationship between political entities from a given news document, which we call directed sentiment extraction. From a million-scale news corpus, we construct a dataset of news sentences where sentiment relations of political entities are manually annotated. We present a simple but effective approach for utilizing a pretrained transformer, which infers the target class by predicting multiple question-answering tasks and combining the outcomes. We demonstrate the utility of our proposed method for social science research questions by analyzing positive and negative opinions between political entities in two major events: 2016 U.S. presidential election and COVID-19. The newly proposed problem, data, and method will facilitate future studies on interdisciplinary NLP methods and applications.more » « less
-
Ha, Yui; Park, Kunwoo; Kim, Su Jung; Joo, Jungseock; Cha, Meeyoung (, Journal of Advertising)null (Ed.)
-
Lu, Yingdan; Schaefer, Jack; Park, Kunwoo; Joo, Jungseock; Pan, Jennifer (, The International Journal of Press/Politics)Government censorship—internet shutdowns, blockages, firewalls—impose significant barriers to the transnational flow of information despite the connective power of digital technologies. In this paper, we examine whether and how information flows across borders despite government censorship. We develop a semi-automated system that combines deep learning and human annotation to find co-occurring content across different social media platforms and languages. We use this system to detect co-occurring content between Twitter and Sina Weibo as Covid-19 spread globally, and we conduct in-depth investigations of co-occurring content to identify those that constitute an inflow of information from the global information ecosystem into China. We find that approximately one-fourth of content with relevance for China that gains widespread public attention on Twitter makes its way to Weibo. Unsurprisingly, Chinese state-controlled media and commercialized domestic media play a dominant role in facilitating these inflows of information. However, we find that Weibo users without traditional media or government affiliations are also an important mechanism for transmitting information into China. These results imply that while censorship combined with media control provide substantial leeway for the government to set the agenda, social media provides opportunities for non-institutional actors to influence the information environment. Methodologically, the system we develop offers a new approach for the quantitative analysis of cross-platform and cross-lingual communication.more » « less
An official website of the United States government

Full Text Available